
Asymmetric Intramolecular Conjugate Addition of Amines to Chiral Vinyl Sulphoxides. Total Synthesis of (R)-(+)-Carnegine

Stephen G. Pyne* and Sandra L. Chapman

Department of Chemistry, University of Wollongong, Wollongong, N.S.W. 2500, Australia

The (*E*)- and (*Z*)-vinyl sulphoxides (**3**) and (**4**) upon treatment with base, undergo cyclization to give chiral isoquinolines one of which was converted into (R)-(+)-carnegine.

In the preceding paper¹ we reported the results of the intramolecular conjugate addition of amines to chiral (E)-vinyl sulphoximides. Although these reactions proceeded in high overall yield and the diastereoisomeric products could be readily separated, the diastereoselectivity was only modest [48% diastereoisomeric excess (d.e.)]. In the light of the

results of Stirling² on the intermolecular addition of amines to chiral (Z)-vinyl sulphoxides (70% d.e.) we expected that the analogous intramolecular reaction should proceed with high π -face selectivity.³ Several reports on the highly diastereoselective intramolecular addition of alcohols to chiral vinyl sulphoxides have recently appeared.⁴

The (R_s) -(E)-vinyl sulphoxide (3) and (R_s) -(Z)-vinyl sulphoxide (4) were conveniently prepared by the Horner–Wittig reaction of aldehyde (2)¹ and (+)-(R)-dimethylphosphorylmethyl *p*-tolyl sulphoxide.⁵ Vinyl sulphoxides (3) and (4) (1.8:1, 62% yield) were readily separated by column chromatography. Basic hydrolysis of (E)-vinyl sulphoxide (3) under a variety of conditions (Table 1) gave a mixture of the diastereoisomeric isoquinolines (6) and (7) [(6):(7) 63:37]. An enhanced diastereoselectivity was observed however, from the base hydrolysis of the (Z)-vinyl sulphoxide (4) (Table 1). This reaction gave (6) and (7) [(6):(7), 16:84] in 96% overall yield from which diastereoisomerically pure (7) could be obtained in 78% yield after flash chromatography. Reductive desulphurization of (7) with Raney Nickel⁶ gave (R)-(+)-

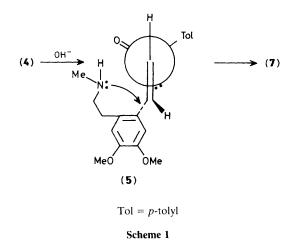


Table 1. Cyclization of vinyl sulphoxides (3) and (4).

Sulphoxide	Base ^a	Solvent	T/°C⁵	Diastereoisomeric ratio ^{c,d} (6):(7)
(3)	[PhCH ₂ NMe ₃]+[OH]-	CH ₂ Cl ₂	-40	58:42
(3)	PhCH ₂ NMe ₃]+OH]-	MeOH	-40	62:38
(3)	Li+OH-	MeOH-H ₂ O	0	63:37
(4)	[PhCH ₂ NMe ₃]+[OH]-	CH_2Cl_2	-40	17:83
(4)	[PhCH ₂ NMe ₃]+[OH]-	MeOH	-40	16:84

^a 3—5 mol equiv. ^b Reaction time ca. 1 h. at 0 °C or 40 h at -40 °C. ^c Determined by ¹H n.m.r. spectroscopy. ^d Yield of (6) and (7) 96% from (4) and 65—75% from (3).

carnegine (1),⁺⁷ {51%, $[\alpha]_D^{18}$ +23.4° (*c* 0.15, EtOH); lit.,⁸ (*S*)-(-)-carnegine $[\alpha]_D^{22}$ -24.9° (*c* 4.45, EtOH)}.

Isoquinoline (7) was recovered diastereoisomerically pure after exposure to the basic cyclization conditions indicating that (6) and (7) arise from a kinetically controlled reaction. In contrast with the analogous reaction of vinyl sulphoximides,¹ the diastereoselectivity of these reactions was independent of the nature of the reaction solvent. We suggest a mechanism (Scheme 1) similar to that proposed by Stirling,² in which the amino group attacks from the least hindered π -face of the vinyl sulphoxide (5). The possibility of H-bonding between the NH of the amino group and the oxygen of the sulphoxide moiety of (5)² would seem unlikely in the absence of a solvent effect.[‡] The possibility of an H-bonded intermediate that incorporates a methanol molecule cannot be excluded however. The application of this methodology to the synthesis of other alkaloids is currently under investigation.

[†] The ¹H n.m.r. of (R)-(+)-carnegine was identical with that of (S)-(-)-carnegine. See ref. 1.

‡ Recent results from our laboratory on the cyclization of other chiral amino vinyl sulphoxides show dramatic solvent effects.

Received, 18th June 1986; Com. 845

References

- 1 S. G. Pyne, J. Chem. Soc., Chem. Commun., preceding paper.
- 2 D. J. Abbot, S. Colonna, and C. J. M. Stirling, J. Chem. Soc., Chem. Commun., 1971, 471.
- 3 For an analogous reaction of thioureas see, J. J. Hansen and A. Kjaer, Acta Chem. Scand., Ser. B., 1974, 28, 418.
- 4 G. Solladie and G. Moine, J. Am. Chem. Soc., 1984, 106, 6097; C. Iwata, M. Fujita, K. Hattori, and S. Uchida, Tetrahedron Lett., 1985, 26, 2221.
- 5 M. Mikolajczyk, W. Midura, S. Grzejszczak, A. Zatorski, and A. Chefczynska, J. Org. Chem., 1978, 43, 473.
- 6 C. R. Johnson and C. J. Stark, Jr., J. Org. Chem., 1982, 47, 1193.
- 7 S. D. Brown, J. E. Hodgkins, J. L. Massingill, Jr., and M. G. Reinecke, J. Org. Chem., 1972, **37**, 1825.
- 8 A. R. Battersby and T. P. Edwards, J. Chem. Soc., 1960, 1214.